sysbench – 数据库功能及性能测试工具

.0 之后的版本使用方法跟之前的有所区别,下面所有内容基于 1.0.9 版本。

另外,为了方便管理测试,最好不要通过命令直接运行测试,而是写成脚本自动化执行测试。

  1. 安装及简介
    Linux 各大发行版通过自带安装工具直接安装即可,RHEL/CentOS 的安装命令如下:

sudo yum -y install sysbench
1
sysbench 可以进行以下测试:

CPU 运算性能测试
磁盘 IO 性能测试
调度程序性能测试
内存分配及传输速度测试
POSIX 线程性能测试
数据库性能测试(OLTP 基准测试,需要通过 /usr/share/sysbench/ 目录中的 Lua 脚本执行,例如 oltp_read_only.lua 脚本执行只读测试)
另外,sysbench 还可以通过运行命令时指定自己的 Lua 脚本来自定义测试。

  1. 使用
    2.1 查看帮助信息
    sysbench –help
    可以通过 sysbench –help 查看 sysbench 的可用命令、选项及內建测试类型的帮助信息,不同测试类型可用的命令也不同:

[root@VM_157_18_centos ~]

# sysbench –help
Usage:
sysbench [options]… [testname] [command]

Commands implemented by most tests: prepare run cleanup help # 可用的命令,四个

General options: # 通用选项
–threads=N 要使用的线程数,默认 1 个 [1]
–events=N 最大允许的事件个数 [0]
–time=N 最大的总执行时间,以秒为单位 [10]
–forced-shutdown=STRING 在 –time 时间限制到达后,强制关闭之前等待的秒数,默认“off”禁用(number of seconds to wait after the –time limit before forcing shutdown, or ‘off’ to disable) [off]
–thread-stack-size=SIZE 每个线程的堆栈大小 [64K]
–rate=N 平均传输速率。0 则无限制 [0]
–report-interval=N 以秒为单位定期报告具有指定间隔的中间统计信息 0 禁用中间报告 [0]
–report-checkpoints=[LIST,…] 转储完整的统计信息并在指定的时间点重置所有计数器。参数是一个逗号分隔的值列表,表示从测试开始经过这个时间量时必须执行报告检查点(以秒为单位)。报告检查点默认关闭。 []
–debug[=on|off] 打印更多 debug 信息 [off]
–validate[=on|off] 尽可能执行验证检查 [off]
–help[=on|off] 显示帮助信息并退出 [off]
–version[=on|off] 显示版本信息并退出 [off]
–config-file=FILENAME 包含命令行选项的文件
–tx-rate=N 废弃,改用 –rate [0]
–max-requests=N 废弃,改用 –events [0]
–max-time=N 废弃,改用 –time [0]
–num-threads=N 废弃,改用 –threads [1]

Pseudo-Random Numbers Generator options: # 伪随机数发生器选项
–rand-type=STRING random numbers distribution {uniform,gaussian,special,pareto} [special]
–rand-spec-iter=N number of iterations used for numbers generation [12]
–rand-spec-pct=N percentage of values to be treated as ‘special’ (for special distribution) [1]
–rand-spec-res=N percentage of ‘special’ values to use (for special distribution) [75]
–rand-seed=N seed for random number generator. When 0, the current time is used as a RNG seed. [0]
–rand-pareto-h=N parameter h for pareto distribution [0.2]

Log options: # 日志选项
–verbosity=N verbosity level {5 – debug, 0 – only critical messages} [3]

–percentile=N percentile to calculate in latency statistics (1-100). Use the special value of 0 to disable percentile calculations [95]
–histogram[=on|off] print latency histogram in report [off]

General database options: # 通用的数据库选项

–db-driver=STRING 指定要使用的数据库驱动程序 (‘help’ to get list of available drivers)
–db-ps-mode=STRING prepared statements usage mode {auto, disable} [auto]
–db-debug[=on|off] print database-specific debug information [off]

Compiled-in database drivers: # 內建的数据库驱动程序,默认支持 MySQL 和 PostgreSQL
mysql – MySQL driver
pgsql – PostgreSQL driver

mysql options: # MySQL 数据库专用选项
–mysql-host=[LIST,…] MySQL server host [localhost]
–mysql-port=[LIST,…] MySQL server port [3306]
–mysql-socket=[LIST,…] MySQL socket
–mysql-user=STRING MySQL user [sbtest]
–mysql-password=STRING MySQL password []
–mysql-db=STRING MySQL database name [sbtest]
–mysql-ssl[=on|off] use SSL connections, if available in the client library [off]
–mysql-ssl-cipher=STRING use specific cipher for SSL connections []
–mysql-compression[=on|off] use compression, if available in the client library [off]
–mysql-debug[=on|off] trace all client library calls [off]
–mysql-ignore-errors=[LIST,…] list of errors to ignore, or “all” [1213,1020,1205]
–mysql-dry-run[=on|off] Dry run, pretend that all MySQL client API calls are successful without executing them [off]

pgsql options: # PostgreSQL 数据库专用选项
–pgsql-host=STRING PostgreSQL server host [localhost]
–pgsql-port=N PostgreSQL server port [5432]
–pgsql-user=STRING PostgreSQL user [sbtest]
–pgsql-password=STRING PostgreSQL password []
–pgsql-db=STRING PostgreSQL database name [sbtest]

Compiled-in tests: # 內建测试类型
fileio – File I/O test
cpu – CPU performance test
memory – Memory functions speed test
threads – Threads subsystem performance test
mutex – Mutex performance test

See ‘sysbench help’ for a list of options for each test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
sysbench help
通过 sysbench help 命令可以查看具体一个测试类型的帮助信息。

sysbench fileio help

sysbench 1.0.9 (using system LuaJIT 2.0.4)

fileio options:
–file-num=N number of files to create [128]
–file-block-size=N block size to use in all IO operations [16384]
–file-total-size=SIZE total size of files to create [2G]
–file-test-mode=STRING test mode {seqwr, seqrewr, seqrd, rndrd, rndwr, rndrw}
–file-io-mode=STRING file operations mode {sync,async,mmap} [sync]
–file-async-backlog=N number of asynchronous operatons to queue per thread [128]
–file-extra-flags=STRING additional flags to use on opening files {sync,dsync,direct} []
–file-fsync-freq=N do fsync() after this number of requests (0 – don’t use fsync()) [100]
–file-fsync-all[=on|off] do fsync() after each write operation [off]
–file-fsync-end[=on|off] do fsync() at the end of test [on]
–file-fsync-mode=STRING which method to use for synchronization {fsync, fdatasync} [fsync]
–file-merged-requests=N merge at most this number of IO requests if possible (0 – don’t merge) [0]
–file-rw-ratio=N reads/writes ratio for combined test [1.5]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2.2 测试 CPU
CPU 测试时,会计算素数(对这个数字除以 2 到这个数字平方根之间的所有数字来验证素数)直到某个指定值所需要的时间。单纯的测试一组非常有限 CPU 硬件性能。

CPU 基准测试时可以指定线程数量和素数上限。

先查看帮助信息:

[root@VM_157_18_centos ~]

# sysbench cpu help
sysbench 1.0.9 (using system LuaJIT 2.0.4)

cpu options:
–cpu-max-prime=N 素数发生器的上限(upper limit for primes generator) [10000]
1
2
3
4
5
开始测试:

[root@VM_157_18_centos ~]

# sysbench –cpu-max-prime=10000 –threads=2 cpu run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 2
Initializing random number generator from current time

Prime numbers limit: 10000

Initializing worker threads…

Threads started!

CPU speed:
events per second: 727.23

General statistics:
total time: 10.0020s
total number of events: 7275

Latency (ms):
min: 1.34
avg: 2.75
max: 39.37
95th percentile: 12.30
sum: 19982.10

Threads fairness:
events (avg/stddev): 3637.5000/1.50
execution time (avg/stddev): 9.9911/0.00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
2.3 测试 fileio
使用 fileio 时,需要创建一组测试文件,测试文件需要大于可用内存的大小,避免文件缓存在内存中影响结果。测试流程为:准备测试文件-》测试-》回收测试文件,命令如下:

sysbench –file-total-size=28G fileio prepare

sysbench –file-total-size=28G –file-test-mode=rndrw –time=300 –max-requests=0 fileio run

sysbench –file-total-size=28G fileio cleanup

1
2
3
对于 I/O 基准测试,可以通过 –file-test-mode 告诉 sysbench 要运行的工作负载的类型,可用类型有:

seqwr:顺序写入
seqrewr:顺序重写
seqrd:顺序读取
rndrd:随机读取
rndwr:随机写入
rndrw:随机读取/写入
上面的例子中使用的是随机读取/写入(rndrw)。通过 –time 选项指定测试持续时间(以秒为单位)。

帮助信息:

sysbench fileio help

sysbench 1.0.9 (using system LuaJIT 2.0.4)

fileio options:
–file-num=N number of files to create [128]
–file-block-size=N block size to use in all IO operations [16384]
–file-total-size=SIZE total size of files to create [2G]
–file-test-mode=STRING test mode {seqwr, seqrewr, seqrd, rndrd, rndwr, rndrw}
–file-io-mode=STRING file operations mode {sync,async,mmap} [sync]
–file-async-backlog=N number of asynchronous operatons to queue per thread [128]
–file-extra-flags=STRING additional flags to use on opening files {sync,dsync,direct} []
–file-fsync-freq=N do fsync() after this number of requests (0 – don’t use fsync()) [100]
–file-fsync-all[=on|off] do fsync() after each write operation [off]
–file-fsync-end[=on|off] do fsync() at the end of test [on]
–file-fsync-mode=STRING which method to use for synchronization {fsync, fdatasync} [fsync]
–file-merged-requests=N merge at most this number of IO requests if possible (0 – don’t merge) [0]
–file-rw-ratio=N reads/writes ratio for combined test [1.5]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
命令的完整输出如下:

[root@VM_157_18_centos ~]

# sysbench –file-total-size=28G fileio prepare
sysbench 1.0.9 (using system LuaJIT 2.0.4)

128 files, 229376Kb each, 28672Mb total
Creating files for the test…
Extra file open flags: 0
Creating file test_file.0
Creating file test_file.1
…此处总共创建了 128 个文件,每个 229376Kb,总共 28672Mb
Creating file test_file.127
30064771072 bytes written in 255.52 seconds (112.21 MiB/sec).

[root@VM_157_18_centos ~]

# sysbench –file-total-size=28G –file-test-mode=rndrw –time=300 –max-requests=0 fileio run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 1
Initializing random number generator from current time

Extra file open flags: 0
128 files, 224MiB each
28GiB total file size
Block size 16KiB
Number of IO requests: 0
Read/Write ratio for combined random IO test: 1.50
Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.
Using synchronous I/O mode
Doing random r/w test
Initializing worker threads…

Threads started!

File operations:
reads/s: 96.00
writes/s: 64.00
fsyncs/s: 204.47

Throughput:
read, MiB/s: 1.50
written, MiB/s: 1.00

General statistics:
total time: 300.0016s
total number of events: 109341

Latency (ms):
min: 0.00
avg: 2.74
max: 256.76
95th percentile: 7.17
sum: 299726.28

Threads fairness:
events (avg/stddev): 109341.0000/0.00
execution time (avg/stddev): 299.7263/0.00

[root@VM_157_18_centos ~]

# sysbench –file-total-size=28G fileio cleanup
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Removing test files…
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
2.4 测试 memory
当在 sysbench 中进行内存测试时,会分配一个内存缓冲区并在此执行读写操作,每次操作都会读完或写满缓冲区。然后重复此操作直到达到指定大小(–memory-total-size)。可以提供多个线程(–threads),不同的缓冲区大小(–memory-block-size)和请求类型(读或写,顺序或随机)。

帮助信息:

sysbench memory help

sysbench 1.0.9 (using system LuaJIT 2.0.4)

memory options:
–memory-block-size=SIZE size of memory block for test [1K]
–memory-total-size=SIZE total size of data to transfer [100G]
–memory-scope=STRING memory access scope {global,local} [global]
–memory-hugetlb[=on|off] allocate memory from HugeTLB pool [off]
–memory-oper=STRING type of memory operations {read, write, none} [write]
–memory-access-mode=STRING memory access mode {seq,rnd} [seq]
1
2
3
4
5
6
7
8
9
10
例如,指定 4 个线程,缓冲区大小为 8KB,在内存中传输 4GB 数据的测试:

[root@VM_157_18_centos ~]

# sysbench –threads=4 –memory-block-size=8k –memory-total-size=4G memory run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 4
Initializing random number generator from current time

Running memory speed test with the following options:
block size: 8KiB
total size: 4096MiB
operation: write
scope: global

Initializing worker threads…

Threads started!

Total operations: 524288 (731249.24 per second)

4096.00 MiB transferred (5712.88 MiB/sec)

General statistics:
total time: 0.7150s
total number of events: 524288

Latency (ms):
min: 0.00
avg: 0.00
max: 43.03
95th percentile: 0.00
sum: 1871.33

Threads fairness:
events (avg/stddev): 131072.0000/0.00
execution time (avg/stddev): 0.4678/0.04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
2.5 测试 threads
测试 threads 时,每个工作线程将被分配一个 mutex(一种锁)。每次执行时,每个线程将循环若干次(通过 –thread-yields 的数量设置),循环时这个线程会锁定,在再次执行时解锁。

通过调整各种参数,可以模拟具有单个或多个锁的高并发线程下的情况。
帮助信息:

sysbench threads help

sysbench 1.0.9 (using system LuaJIT 2.0.4)

threads options:
–thread-yields=N number of yields to do per request [1000]
–thread-locks=N number of locks per thread [8]
1
2
3
4
5
6
运行测试:

[root@VM_157_18_centos ~]

# sysbench –thread-yields=2000 –thread-locks=8 threads run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 1
Initializing random number generator from current time

Initializing worker threads…

Threads started!

General statistics:
total time: 10.0002s
total number of events: 16554

Latency (ms):
min: 0.50
avg: 0.60
max: 37.05
95th percentile: 0.94
sum: 9978.12

Threads fairness:
events (avg/stddev): 16554.0000/0.00
execution time (avg/stddev): 9.9781/0.00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2.6 测试 mutex
测试 mutex 时,sysbench 将为每个线程运行一个请求。这个请求首先会对 CPU 施加一些压力(使用一个简单的增量循环,通过 –mutex-loops 参数设置),然后随机使用一个 mutex(锁),递增一个全局变量并再次释放锁。这个过程根据锁的个数(–mutex-locks)多次重复。随机 mutex 取自大小为 –mutex-num 的参数池。

帮助信息:

sysbench mutex help

sysbench 1.0.9 (using system LuaJIT 2.0.4)

mutex options:
–mutex-num=N total size of mutex array [4096]
–mutex-locks=N number of mutex locks to do per thread [50000]
–mutex-loops=N number of empty loops to do outside mutex lock [10000]
1
2
3
4
5
6
7
运行测试:

[root@VM_157_18_centos ~]

# sysbench mutex run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 1
Initializing random number generator from current time

Initializing worker threads…

Threads started!

General statistics:
total time: 0.2132s
total number of events: 1

Latency (ms):
min: 213.10
avg: 213.10
max: 213.10
95th percentile: 211.60
sum: 213.10

Threads fairness:
events (avg/stddev): 1.0000/0.00
execution time (avg/stddev): 0.2131/0.00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2.7 OLTP 基准测试
OLTP 基准测试模拟了一个简单的事务处理系统的工作负载。然而最新版本的 sysbench 把 OLTP 这个曾经的內建测试类型移除了,如果要用,需要在命令中指定测试类型的位置用 /usr/share/sysbench/oltp_read_only.lua 脚本代替测试类型。

流程:指定数据库-》建表并生成数据-》运行测试-》清理测试表。

首先生成表,注意替换命令中的数据库密码和 MySQL 套接字,如果 MySQL 安装在默认位置,可以去掉 –mysql-socket 选项:

sysbench –db-driver=mysql –mysql-user=root –mysql-password= \
–mysql-socket= –mysql-db=foo –range_size=100 \
–table_size=10000 –tables=2 –threads=2 –events=0 –time=60 \
–rand-type=uniform /usr/share/sysbench/oltp_read_only.lua prepare
1
2
3
4
运行测试,指定了 2 个并发线程,:

sysbench –db-driver=mysql –mysql-user=root –mysql-password= \
–mysql-socket= –mysql-db=foo –range_size=100 \
–table_size=10000 –tables=2 –threads=2 –events=0 –time=60 \
–rand-type=uniform /usr/share/sysbench/oltp_read_only.lua run
1
2
3
4
清理测试时生成的测试表:

sysbench –db-driver=mysql –mysql-user=root –mysql-password= \
–mysql-socket= –mysql-db=foo –range_size=100 \
–table_size=10000 –tables=2 –threads=2 –events=0 –time=60 \
–rand-type=uniform /usr/share/sysbench/oltp_read_only.lua cleanup
1
2
3
4
例如我的选项就是:

[root@VM_157_18_centos ~]

# sysbench –db-driver=mysql –mysql-user=root –mysql-password=1qaz@WSX –mysql-db=foo –range_size=100 –table_size=10000 –tables=2 –threads=1 –events=0 –time=60 –rand-type=uniform /usr/share/sysbench/oltp_read_only.lua prepare
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Creating table ‘sbtest1’…
Inserting 10000 records into ‘sbtest1’
Creating a secondary index on ‘sbtest1’…
Creating table ‘sbtest2’…
Inserting 10000 records into ‘sbtest2’
Creating a secondary index on ‘sbtest2’…

[root@VM_157_18_centos ~]

# sysbench –db-driver=mysql –mysql-user=root –mysql-password=1qaz@WSX –mysql-db=foo –range_size=100 –table_size=10000 –tables=2 –threads=1 –events=0 –time=60 –rand-type=uniform /usr/share/sysbench/oltp_read_only.lua run
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 1
Initializing random number generator from current time

Initializing worker threads…

Threads started!

SQL statistics:
queries performed:
read: 645708
write: 0
other: 92244
total: 737952
transactions: 46122 (768.67 per sec.)
queries: 737952 (12298.73 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)

General statistics:
total time: 60.0003s
total number of events: 46122

Latency (ms):
min: 1.06
avg: 1.30
max: 34.08
95th percentile: 1.50
sum: 59896.08

Threads fairness:
events (avg/stddev): 46122.0000/0

[root@VM_157_18_centos ~]

# sysbench –db-driver=mysql –mysql-user=root –mysql-password=1qaz@WSX –mysql-db=foo –range_size=100 –table_size=10000 –tables=2 –threads=1 –events=0 –time=60 –rand-type=uniform /usr/share/sysbench/oltp_read_only.lua cleanup
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Dropping table ‘sbtest1’…

Dropping table ‘sbtest2’…

作者:kikajack
来源:CSDN
原文:https://blog.csdn.net/kikajack/article/details/79977108
版权声明:本文为博主原创文章,转载请附上博文链接!